US 2005/0005261 Al

that implements software including an individual computer
such as a personal computer, mainframe computer, mini-
computer, personal data assistant (PDA), etc. In addition
computer system refers to any type of network of computers,
such as a network of computers in a business, the Internet,
computers connected by wired or wireless connections to
one or more computers on either a permanent or temporary
basis, etc. A computer system also refers to electronic
devices that implement one or more functions of a computer
such as: a cell phone, a television, a videogame console, a
compressed audio or video player such as an MP3 player, a
DVD player, a microwave oven, etc. The meta-implemen-
tation layer and/or computer integration engine may be
stored on an individual computer or be stored on one or more
computers of a network of computers

[0081] For the purposes of the present invention, the term
“user” refers to all users of a meta-implementation layer, a
component integration engine, or any other software pro-
gram. A user may be an end user, a programmer, a system
administrator, a software developer, another computer sys-
tem, etc.

[0082] For the purposes of the present invention, the term
“visual display device” or “visual display apparatus”
includes any type of visual display device or apparatus such
as a CRT monitor, LCD screen, LEDs, a projected display,
a printer for printing out an image such as a picture and/or
text, etc. A visual display device may be a part of another
device such as a computer monitor, television, projector,
telephone, laptop computer, watch, kitchen appliance, elec-
tronic organ, automatic teller machine (ATM) ete.

[0083] Description

[0084] The present invention provides a meta-implemen-
tation layer for accessing metadata is provided, which is not
only ubiquitously available for every function and data
structure available in a computer system but is also compiled
into the program so it is faster than existing metadata
methods. Metadata can be defined for any structure, allow-
ing it to describe object-oriented and non-object oriented
structures, and includes a definition of the structure, includ-
ing methods, attributes, constructors, destructors, and
events. Metadata is used to convey the description of data
that is acceptable, filter values if they are not acceptable, get
or set the current values on a specific object or data structure,
and invoke execution of an operation.

[0085] The present invention provides a method of access-
ing objects constructors, methods, and attributes through
metadata in a compiled form that does not require a specific
interface, implementation or naming convention for the
implementation. Metadata for an object does not require that
the object implements a specific interface, extends a specific
parent class, or follow a specific naming convention as is
required by other contemporary metadata mechanisms.
Metadata for an object does not require the object to
implement the metadata mechanics. By removing metadata
mechanics from the object, legacy and existing code does
not have to be rewritten thereby avoiding the introduction of
new errors into the code. Metadata mechanics allow com-
piled or dynamic access. Dynamic mechanics requiring an
object implement a specific interface or naming convention
and are in common use. Compiled metadata mechanics may
be faster than dynamic mechanics and are not in use else-
where contemporary to this invention.

Jan. 6, 2005

[0086] The present invention also provides a component
integration engine, which is a system and method for inte-
grating objects and data within an object-oriented computing
environment using metadata. The component integration
engine manages the interactions between two or more
objects and between objects and data, simplifying integra-
tion and limiting unexpected side effects. The unique com-
bination of centralized managed resources, metadata for
configuring objects and data, and a command architecture
which uses metadata to describe input, instructions, and
output creates a new type of software application hereafter
referred to as a component integration engine or a compo-
nent integration engine. The component integration engine
uses the command in conjunction with metadata to combine
small, simple commands into assemblies that perform com-
plex processes and software applications. The engine does
this by using metadata to setup input data, using metadata to
invoke methods in a specific order, and returning the final
result. Data and method invocations through metadata pro-
vide the component integration engine with the benefit of
class indirection, object indirection, function substitution
and data substitution.

[0087] The present invention also provides a new pattern
for displaying and controlling model information is pro-
vided, which modifies the traditional “model view control-
ler” pattern using metadata to allow for more flexibility and
code reuse.

[0088] The component integration engine of the present
invention provides a combination of a) centralized managed
resources b) metadata for configuring all objects and struc-
tured data in the running system, and c¢) a command archi-
tecture which uses metadata to describe input, instructions,
and output.

[0089] In embodiments of the meta-implementation layer
and component integration engine of the present invention,
a set of centralized managers is responsible for managing
objects that describe common functionality such as access to
shared resources (files, databases, email servers, caches),
parallel processing (thread pools, user access points), and
security (login, authorization, code validation, data valida-
tion). These managers are themselves managed by a “Man-
agerManager”. Any manager or managed component can be
interchanged with another managed component that is
accepted by the manager. Programs accessing managed
resources by identity have no way of knowing what specific
object will be retrieved from a manager, only that it will fit
the type of the object requested to perform a specific task.
This decouples object connections, since objects reference
the managers to access other objects rather than referencing
these objects directly. This indirection allows model substi-
tution, object substitution, functional substitution and data
substitution to occur at run-time. A manager can manage any
object that is side effect free.

[0090] Objects that are side effect free can be used and
shared between many processes concurrently. By retrieving
an object by a known identity or by a query, changes in
manager configuration allow model substitution, object sub-
stitution and functional substitution at run-time.

[0091] Objects that are not side effect free can be retrieved
from component selectors. A component selector is itself
side effect free, so it can be managed. The selector accepts
the type of object that is requested, and returns the appro-



